关于恒星的这个经典理论 中国天文学家最新研究提出了挑战******
中新网北京1月19日电 (记者 孙自法)广袤宇宙的千亿星系中无时无刻不在诞生着新的恒星,同一恒星形成区会批量形成许多不同质量的新生恒星。长期以来,“恒星初始质量分布规律不变”一直是天文界关于恒星演化研究的一个经典理论。
这一恒星经典理论绝对正确吗?恒星初始质量分布规律真的一成不变吗?中国科学院(中科院)国家天文台刘超研究员领导的合作团队最新研究发现,“恒星初始质量分布规律”会随着恒星金属元素含量和年龄发生显著变化,对其“不变”的经典理论提出挑战。
中国天文学家完成的这项刷新人类认知、将对天体物理多个领域研究产生深远影响的重大科研成果论文,北京时间1月19日凌晨在国际著名学术期刊《自然》发表。论文通讯作者刘超形象科普称,这也就是说,宇宙不同的地方必须用不同的“尺子”丈量,才能得到正确的测量结果。
终结恒星初始质量分布规律是否变化争议
中科院国家天文台介绍说,该台联合北京师范大学天文和天体物理前沿科学研究所、南京大学、中科院紫金山天文台等研究人员,发挥国家重大科技基础设施郭守敬望远镜(大天区面积多目标光纤光谱天文望远镜,LAMOST)光谱数据超大样本优势,并结合欧洲空间局盖亚(Gaia)卫星数据,研究发现天体物理学中一个非常重要的基础概念——“恒星初始质量分布规律”会随着恒星金属元素含量和年龄发生显著变化,从而对“恒星初始质量分布规律不变”的经典理论提出挑战,并刷新了人类对这一基本概念的认知。
研究团队在本次研究中发现,他们首次清晰观测到年轻的小质量恒星数量比例明显高于年老的恒星。此外,金属含量越高的恒星家族中小质量恒星数量比例也越多。这是天文学家首次如此清晰地观测到恒星初始质量分布规律随着恒星金属元素含量和年龄发生了显著变化,直接导致恒星初始质量分布规律在宇宙中普适不变的基本假设不再成立,也终结了一直以来天文界关于恒星初始质量分布规律是否变化的争议。
恒星初始质量函数领域国际权威、德国波恩大学教授帕弗尔·库鲁帕(Pavel Kroupa)评价认为,这项研究基于大样本观测获取的高质量数据,揭示了银河系中恒星初始质量函数与银河系演化历史和环境相关,对于深入理解银河系中不同环境不同时间恒星形成的性质非常重要。
图中横坐标显示恒星星族的金属元素含量(金属丰度),数值越大金属丰度越高。纵坐标显示恒星初始质量函数的形状,α数值越大表示质量较小的恒星比例越高。红色圆点显示年老星族α值比较小,即质量较小恒星的比例低;蓝色三角形显示较年轻恒星随着金属丰度变高,α值也增加,即质量较小恒星的比例增加。中科院国家天文台 供图9万多精细样本直接获取恒星初始质量函数
论文第一作者、中科院国家天文台博士研究生李佳东解释说,恒星初始质量分布规律,天文学上通常称为恒星初始质量函数,它描述了一群恒星在刚刚诞生时,不同质量的恒星所占的比例。在整个天体物理研究中,恒星初始质量函数是现代天文学中一个非常基础的物理概念,对许多关键天体物理学问题的研究起到至关重要的作用。
半个多世纪以来,天文学家通常认为恒星初始质量函数在宇宙各处及各个演化阶段是普适不变的,并作为基本假设在星系形成与演化、星团结构和演化、双星演化,甚至太阳系外行星以及引力波等诸多天体物理研究领域广泛应用,几乎成为天体物理教科书中的“经典假设”。
不过,天文学家近年来通过各种新的观测,发现恒星初始质量函数很有可能不是普适不变的。论文合作者、南京大学天文系教授张智昱指出,一些迹象显示,在恒星形成活跃的环境中大质量恒星的比例更高,这意味着恒星初始质量函数可能不是普适的。
恒星初始质量函数在宇宙各处是否变化成为困扰天文学家的重要问题,需要在银河系中找到更为直接有力的观测证据。近年来,随着郭守敬望远镜、盖亚卫星等中外大型天文设施投入观测运行,并获得海量观测数据,助力中国天文学家发现恒星初始质量函数变化的直接证据。
研究团队发挥郭守敬望远镜大样本光谱数据优势,筛选出迄今最精细的9万多颗太阳邻域的恒星样本,并获取了每颗恒星的金属元素含量和质量。结合盖亚卫星观测数据,他们首次通过俗称“数星星”这一最直观的恒星计数法,对具有不同金属元素含量和年龄的恒星进行统计,从观测角度直接获取了几乎不依赖于任何模型的恒星初始质量函数。
宇宙不同地方需要合适“尺子”正确测量
研究团队认为,无论是测量宇宙不同阶段星系中暗物质和重子物质质量、构建星系化学演化,还是理解恒星形成过程、分析双星演化的物理机制、探测太阳系外行星,甚至包括研究恒星级引力波事件等一系列天体物理学前沿问题的研究,都将因恒星初始质量函数的变化而受到挑战。
刘超以“尺子”作比喻指出:“这如同是一把会随着环境变化的‘尺子’,不能用同一把‘尺子’丈量宇宙的不同地方。在宇宙不同地方,天文学家需要更换合适的‘尺子’,才能得到正确的测量结果。例如,使用银河系目前的‘尺子’就无法测量早期的宇宙”。
论文合作者、中科院紫金山天文台符晓婷副研究员补充说,如此复杂变化的恒星初始质量函数,对恒星形成理论也提出了严峻的挑战。
中科院国家天文台表示,这一原创性成果是中国天文大科学装置郭守敬望远镜在前沿基础研究领域取得的又一项突破性进展。未来,中国将发射中国空间站工程巡天望远镜(CSST),将助力天文学家在银河系更深远区域及近邻星系中进一步验证该重大发现,为更深入理解恒星初始质量函数和恒星形成的物理过程,提供更加丰富的天文观测数据。(完)
【我们这十年@坐标中国】云网融合织就算力高速,“算”出数字生活潮****** 中新网北京10月11日电题:云网融合织就算力高速,“算”出数字生活潮 作者 左雨晴 从“要想富,先修路”到“想发展,投算力”,算力基础设施等“新基建”正在国内掀起“落地潮”。 我们为什么需要算力?现在算力速度有多快?它又给我们带来了什么? 算力改变生活 什么是算力?算力是指对数据的处理能力。 在生活中,手机、电脑、超级计算机等诸多硬件设备都离不开算力,可以说算力是数字经济的底层逻辑,数字经济的任何发展都建立在优化的算法和强大的计算速度上,这让算力成为关键的核心生产力。 近年来,随着5G、人工智能、物联网、区块链等领域的快速发展,算力已悄悄改变我们的生活和命运。 在机场高速路口,汽车以80公里时速,“无感”通过收费站,仅收费环节每天就能节约2.75小时,大大改善了市民的出行体验。 广州机场高速,汽车以80公里时速,“无感”通过收费站。 中国电信供图在生产线上,一款新车上线前需要经历上千次的碰撞测试,而超级算力能模拟出整个碰撞过程,300次的仿真碰撞试验,在一分钟内成功模拟完成。更长远来看,“智能汽车”是离人工智能最近的应用场景之一,若能更快普及,将再次重塑人们的出行生活方式。 在偏远山区,大量人工智能深度学习算法和算力支撑下的智能教育,让远程人工智能可以辅助教师“因材施教”,推动教育资源均衡化,帮助深山里的孩子实现“走出大山”的梦想。 据工信部数据,中国算力产业规模快速增长,近五年平均增速超过30%。截至2022年6月底,我国在用数据中心机架总规模超过590万标准机架,服务器规模约2000万台,算力总规模超过150EFlops(每秒15000京次浮点运算次数),排名全球第二。 在数字化时代,数据中心、智算中心等算力基础设施正成为加速数字经济发展和产业转型升级的主要动力。在算力需求日益复杂,应用场景不断涌现的当下,中国东部地区算力资源吃紧,西部算力赋闲,如何让用户更好地像用电一样使用算力服务? 云网融合织就算力“高速路网” 数字时代正在召唤一张高效率的“算力网”。 2012年,中国电信宣布启动天翼云计算战略,正式进军云计算领域,成为国内首家涉足云计算服务的运营商。 以“算”为中心,“网”为根基,算力网络可驱动数据的跨域流动、实现算力的跨域调配。而作为一个复杂的、融合创新的系统性工程,算力网络如何像水和电一样成为“一点接入、即取即用”的社会级服务,孵化灵活多样的商业应用,需要统一的科学规划与评估。 2022年2月,中国“东数西算”工程正式全面启动。8个国家算力枢纽节点,10个国家数据中心集群,将打通中国“数”动脉,把东部算力需求有序引导到西部的数据中心处理、计算、存储,为可再生能源丰富的西部开辟出一条发展新路,成为一条打通东西部经济社会发展的“数动脉”。 作为算力基础设施和骨干传输网络的建设者,电信运营商已经成为打造算力网络的主力军。覆盖全国千城万池的“云网融合”,不仅构建端到端的安全能力和绿色低碳的基础设施,也让实体经济和人们的生活乘“云”而上。 通过内蒙古、贵州两个服务全球的中央数据中心,京津冀、长三角、粤港澳、陕川渝四个重点区域节点,31个省份均有布局的数据中心,再加上广泛分布的边缘节点,中国电信形成了2+4+31+X的全国算力布局。 中国电信京津冀大数据产业园。 中国电信供图如今,中国电信已拥有700多个数据中心,48.7万架互联网数据中心机架,机架利用率达到72%,IDC资源在国内数量最多、分布最广,“一城一池”累计覆盖超过160个地市。 “计算+连接”的深度融合,组成了算力传输的“高速路网”。在这个“高速路网”中,中国电信的算力规模可达每秒310亿亿次浮点运算,这意味着每一秒都有海量的算力正在调度。 从中国电信贵州数据中心到北京大约2200公里,动车需要10个小时左右,而算力传输时延只需要不到20毫秒。算力与网络充分融合,正以难以想象的速度,从看不见的地方延伸到看得见的远方,为人们的生活提供普惠便捷的智能服务。 “算网大脑”让算力调度智能化 随着东部算力需求有序引导到西部,一个逐步完善的数网协同、数云协同、云边协同、绿色智能的多层次算力设施体系必将加快形成。在此过程中,“十四五”规划提出的“强化算力统筹智能调度”成为构建算力网络的重要工作。 “算力调度作为‘东数西算’的重要环节,就如同‘西气东输’的管道,‘西电东送’的高压线路。但算力调度在实施过程却又复杂很多,分布式的算力决定了算力是多样的,例如计算任务的大小、时延要求、成本等多个因素。”中国电信天翼云首席技术官广小明表示。 以算力为核心进行信息处理,以网络为核心进行信息交换,算力“高速路网”需要一颗独特的智能“大脑”。 2022年5月17日,在天翼云诞生的第十年,中国电信推出了天翼云4.0算力分发网络平台——“息壤”,使得调度千城万池的算力不再是梦。 中国电信天翼云数据中心。 中国电信供图。广小明介绍,无论业务对算力的需求是多少,“息壤”都能够规划出满足需求的算力和网络资源,以“随愿算网”的方式,对边缘云、中心云、第三方资源等全网算力进行统一管理和调度,实现业务性能和成本的最优。 “由算力调度引擎、算力资源管理平台、算力资源共同构成的‘息壤’就像一个算力传输的枢纽,在全国范围内,实现每分钟数万次、每天上千万次的算力统筹和调度,满足各种领域对算力的极致需求。” 把东部需要进行的机器学习、数据推理、智能计算等AI训练和大数据推理的工作放到西部,自动配置和调度相应算力;把东部对时延不敏感的、不活跃的、需存档的海量数据,例如医院影像数据、视频监控数据等,放在西部存储……通过“息壤”,“东数西训”、“东数西备”、“东算西也算”、“东部企业,西部上云”成为现实,云渲染、跨云调度、性能压测、混合云AI计算等多种应用场景,也都有着“息壤”的身影。 时代浪潮下,算力正加速筑牢数字经济的底座,成为经济社会发展迈向更远未来的基石。(完)
|